Published on 16 April 2015. Downloaded by University of South Florida on 07/05/2015 13:28:42.

ChemComm

CrossMark
&click for updates

' ROYAL SOCIETY
OF CHEMISTRY

Creating extra pores in microporous carbon via a

template strategy for a remarkable enhancement

Cite this: Chem. Commun., 2015,
51, 8683

Received 3rd March 2015,
Accepted 16th April 2015

of ambient-pressure CO, uptakef

Baiyan Li,° Yiming Zhang,** Dingxuan Ma,” Liangkui Zhu,” Daliang Zhang,”

Matthew Chrzanowski,® Zhan Shi® and Shenggian Ma*?

DOI: 10.1039/c5cc01828e

www.rsc.org/chemcomm

In this work, we illustrate a template strategy to create extra pores
in microporous carbon for enhancing ambient-pressure CO, uptake,
as exemplified in the context of carbonizing the silicon-containing
POP, PPN-4, followed by removal of the silicon template. The
resultant PPN-4/C600 demonstrates a remarkable enhancement of
CO, uptake capacity at 295 K and 1 bar by a factor of 2.3 compared to
the parent PPN-4.

Over the past several decades, the emission of CO, as greenhouse
gas in the atmosphere has been recognized as an environmental
problem.! Current technologies addressing this issue are domi-
nated by energy-intensive, corrosive and inefficient amine-based
wet-scrubbing systems.> Adsorptive technologies that exploit
physisorption of CO, onto surfaces of porous materials have
gained momentum due to the facile regeneration process.’
Porous organic polymers (POPs)* have recently been advanced
as new types of porous materials for CO, capture application due
to their high surface areas and adjustable pore size. Compared
with other widely investigated porous materials of metal-organic
frameworks (MOFs),>” POPs usually feature high thermal and
water/chemical stabilities due to the covalent bonding nature
of the framework construction, which makes them a promising
platform for CO, capture.”* However, high-surface area POPs
commonly lack strong interactions between CO, and the surface,
typically affording very low CO, uptake capacities at ambient
temperatures and pressures.® Some strategies have been employed
to enhance CO, adsorption ability in porous organic polymers
such as grafting aliphatic amines for chemically binding CO,
molecules’® and creating electro-static fields to polarize CO,
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molecules by sulfonate.”” Moreover, direct carbonization of
POP materials to create microporous carbon materials also
provides another feasible strategy to enhance the uptake ability
for CO, capture.® Recently, we illustrated an efficient strategy
to enhance the CO, uptake ability by pre-introducing an extra
carbon source into POPs followed by carbonization to create
microporous carbon materials with narrow pore size, thus
increasing the CO, adsorption enthalpies.?® Besides increasing
the adsorption enthalpies, creating extra pores in porous materials
would represent another appealing way to enhance CO, capture
capacity. Herein, we report a strategy to create extra pores by
removal of the silicon template in porous carbon materials derived
from carbonizing silicon-containing POPs.

We selected PPN-4° as a “proof-of-concept” model because
of its rigid and silicon-containing framework. To obtain the
desired porous carbon, we heated three samples of PPN-4, one
each to 600 °C, 800 °C, and 1000 °C under an inert gas atmo-
sphere for 8 h affording carbonized materials. The obtained
samples were then soaked in KOH solutions at 120 °C for two
days to remove the silicon templates. The resultant carbon
materials were designated as PPN-4/C600, PPN-4/C800 and
PPN-4/C1000, respectively (Scheme 1).

Powder X-ray diffraction (PXRD) patterns of the three
samples (Fig. S1, ESIt) display two broad peaks around 23°
and 43°, corresponding to carbon (002) and (101) diffractions
respectively. The results thus indicate the amorphous feature of
these carbon materials. Transmission electron microscopy
(TEM) studies suggest that the three samples exhibit wormhole-
like micropores (Fig. 1), and the materials are essentially amor-
phous, consistent with the PXRD analysis. EDX analysis indicates
that the KOH treatments lead to complete removal of the silicon
templates (Fig. S4, ESIT).

N, sorption isotherms collected at 77 K (Fig. 2, Fig. S5-S7,
ESIt) reveal that PPN-4/C600, PPN-4/C800 and PPN-4/C1000
exhibit typical type-I adsorption behavior, characteristic of
microporous materials. Their uptake capacity at the saturation
pressure (P/P, = 0.95) is 380 cm® g ', 384 em® g~ " and 333 em® g~ ¥,
respectively. These results are much lower than that of PPN-4
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Scheme 1 Schematic illustration of the procedures for the preparation of
PPN-4/CX00 (X = 6, 8, or 10).
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Fig.1 TEM images of PPN-4/C600, PPN-4/C800, and PPN-4/1000.

(1262 cm® g~ 1). This means a dramatic drop in the Brunauer-
Emmett-Teller (BET) surface area from 2882 m”> g~ ' for PPN-4
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Fig. 2 N, adsorption isotherms for PPN-4 (black), PPN-4/C600-Si (red),
PPN-4/C600 (blue) at 77 K.

(please note: the significantly lower surface area compared with
that of PPN-4 reported in ref. 9 could result from the much larger
amounts of starting materials used in this work for the POP
preparation) to 1322 m* g~ !, 1372 m® ¢~ ' and 1152 m* g~ ' for
PPN-4/C600, PPN-4/C800, and PPN-4/C1000, respectively (Table S1,
ESIt). These results are consistent with the observations reported
previously with similar thermal treatments,**” and the decreasing
surface area should be presumably due to the conversion of single-
layered POP materials into multi-layered amorphous carbon
materials. In comparison, the samples containing silicon tem-
plates exhibit lower BET surface areas with 636 m* g, 662 m* g™
and 443 m*> g~ for PPN-4/C600-Si, PPN-4/C800-Si and PPN-4/
C1000-Si, respectively. The large enhancement of the surface area
after the template removal is indicative of the successful creation
of extra pores. Pore size distribution analysis based upon the
widely employed Horvath-Kawazoe (HK) model™ (Fig. $8-510,
ESIt) indicates that PPN-4/C600, PPN-4/C800, and PPN-4/C1000
exhibit pore sizes predominantly distributed around 4.7-4.8 A,
significantly smaller than PPN-4’s pore size distributed around
12.7 A (Table S1, ESIT). The pore sizes of PPN-4/C600, PPN-4/C800,
and PPN-4/C1000 are comparable to those of PPN-4/C600-Si, PPN-4/
C800-Si and PPN-4/C1000-Si with pore sizes distributed around
5.0-5.2 A. These results thus highlight that the template
removal strategy by carbonizing POP materials not only narrow
down the pore size compared with their pristine materials but
also can create extra pores in porous carbon materials.
Considering the reduction of pore sizes in comparison
with the pristine material of PPN-4 as well as the significant
enhancement of surface areas compared with silicon containing
porous carbons, we decided to examine the ambient-pressure
CO, adsorption performances of PPN-4/C600, PPN-4/C800 and
PPN-4/C1000 (Fig. 3 and Fig. S11 and S12, ESIt). CO, adsorption
isotherms collected at 295 K show that PPN-4/C600 exhibits the
highest CO, uptake capacity among the three samples with a value
of 87 cm® g™' (equivalent to 3.9 mmol g~ * or 17.1 wt%) under
1 atm pressure. This means an enhancement by a factor of 2.3
when compared to the parent PPN-4 (26 cm® ¢~ " or 1.2 mmol g~ *
or 5.3 wt%) under the same conditions (Fig. 3). It also significantly
outperforms PPN-4/C600-Si, which shows a CO, uptake capacity of
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Fig. 3 CO, adsorption isotherms of PPN-4 (black), PPN-4/C600-Si (red),
PPN-4/C600 (blue) at 295 K.

48 cm® g ' (equivalent to 2.1 mmol g~ " or 9.4 wt%) at 295 K and
under 1 atm. We reason that the enhancement of ambient-pressure
CO, uptake capacity in PPN-4/C600-Si and PPN-4/C600 compared
with the pristine PPN-4 should be attributable to the narrow pores
(<8 A) that resulted from the carbonization process, in which
the potential fields of the opposite pore walls can overlap thus
strengthening the interaction with CO, molecules. Given their
similar pore sizes, the higher CO, uptake capacity PPN-4/C600
than PPN-4/C600-Si should be due to its higher surface area as a
result of the extra pores created by removal of Si in PPN-4/C600-Si.
The boost of CO, adsorption is also observed at 273 K and 1 atm for
PPN-4/C600 (134 cm® g~ or 6.0 mmol g~ " or 26.5 wt%) compared
with PPN-4/C600-Si (78.5 cm® g~ or 3.5 mmol g or 15.4 wt%)
(Fig. S13, ESIt), further validating our strategy of creating extra
pores via removal of the Si template for enhancing the CO,
uptake capacity. It is noteworthy that the CO, uptake capacity of
PPN-4/C600 at 295 K and 1 atm is among the highest for porous
carbon materials reported thus far.® PPN-4/C600 outperforms
P-C450 (4.5 mmol g~! at 273 K and 1 bar),®” FCDTPA-K-700
(3.71 mmol g~" at 298 K and 1.13 bar),* and is comparable to
NC900 (3.9 mmol g~ " at 298 K and 1 atm),"* PAF-1/C-900 which
resulted from carbonizing the POP, PAF-1 with the introduction
of an extra carbon source (4.1 mmol g~ at 295 K and 1 atm).**
PPN-4/C600 also surpasses the sulfonic acid grafted porous
organic polymers, PPN-6-SO;H (3.6 mmol g~ at 295 K and
1 bar) and PPN-6-SO;Li (3.7 mmol g~ * at 295 K and 1 bar),”? yet
remains comparable to the aliphatic amine-tethered porous
organic polymer, PPN-6-CH,DETA (4.3 mmol g~ at 295 K and
1 bar).”” Moreover, the CO, uptake capacity of PPN-4/C600 at
295 K and 1 atm compares favorably to that of ZIFs (e.g. 9.1 wt%
for the best ZIF of ZIF-78"% at 298 K and 1 bar), most MOFs (e.g.
15.4 wt% for mmen-Cu-BTTri>* and 15.2 wt% for bioMOF-11°°
at 298 K and 1 bar) and most zeolite materials (e.g. 3.1 mmol g~ *
for Na-A"® at 298 K and 1 bar) under similar conditions.

We tested the recyclability of PPN-4/C600 by simulating
vacuum swing adsorption processes using an ASAP2020 analyzer,
by putting the materials through cycles of saturation and vacuum,
exposing the materials to CO, up to 1.1 bar at 295 K followed by
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Fig. 4 The cycle experiments of CO, adsorption for PPN-4/C600.

high vacuum desorption for 30 min at room temperature. The
results show no apparent loss in CO, capacity after five cycles
(Fig. 4), indicating complete desorption during each regeneration
cycle. The apparent lack of reduction in CO, capacity indicates
that the adsorption mechanism in PPN-4/C600 primarily results
from physical adsorption, allowing for non-energy intensive
regeneration processes.

In summary, we demonstrated that the creation of extra
pores by removal of the silicon template in porous carbon
materials derived from carbonizing Si-containing POPs can
afford high ambient-pressure CO, uptake capacity, as exempli-
fied in the context of carbonizing PPN-4 followed by removal
of the silicon template. The resultant PPN-4/C600 exhibits a
remarkable enhancement of CO, uptake capacity at 295 K and
1 bar by a factor of 2.3 compared to the pristine PPN-4. The
strategy of creating extra pores via removal of the template (e.g.
Si in this work) represents a promising approach to boost CO,
adsorption in microporous carbon materials for CO, capture
applications. It could also be applied to other types of porous
materials for various applications, and research along this line
is currently underway in our laboratory.

The authors acknowledge the University of South Florida for
financial support of this work.
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