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Pre-introducing an extra carbon source into the porous aromatic
framework of PAF-1 followed by thermolysis affords a new micro-
porous carbon material, which demonstrates a CO, uptake capa-
city of 93 cm® g~' (equivalent to 4.1 mmol g~ or 18.2 wt%) at
295 K and 1 bar.

The steady increase of CO, levels in the atmosphere over the
past several decades has urged the development of viable
carbon dioxide capture and sequestration (CCS) technologies
to reduce the greenhouse emissions.' Current technologies are
dominated by amine-based web-scrubbing systems, which are
energy-costly, corrosive and inefficient.” This thus prompts the
exploration of alternative approaches for CCS, and physisorp-
tion of CO, using porous materials holds great promise due to
the facile regeneration process.’

Advanced porous materials such as porous organic polymers
(POPs) (including conjugated microporous polymers (CMPs),*
porous aromatic frameworks (PAFs),> and porous polymer net-
works (PPNs)®) and metal-organic frameworks (MOFs)>” have
recently been intensively investigated for CO, capture applica-
tion. However, POPs usually exhibit very low CO, uptake
capacities at ambient temperatures and pressures due to the
low CO, adsorption enthalpies as a result of the lack of strong
CO, binding sites,°’ whereas MOFs typically possess poor
water/chemical stabilities.>* Porous carbon materials, which
feature high thermal/water/chemical stabilities, diverse avail-
ability and facile regeneration, have also been explored for CO,
capture application.® Nonetheless, the large pore sizes together
with broad pore size distributions lead to low CO, adsorption
capacities, typically 2-3 mmol g~ " at 25 °C under 1 bar, for most
porous carbon materials.*? Various studies on CO, capture in
MOFs have suggested that pore size plays an important role in
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CO, capture performances, and narrow pores of ~4 Ato ~8 A
could facilitate CO, adsorption due to the fact that the potential
fields of the opposite pore walls can overlap thus strengthening
the interaction with CO, molecules.>**® Direct thermolysis of
MOFs or MOFs embedded with additional carbon sources to
prepare ordered porous carbon materials with reduced pore
sizes has recently been demonstrated,’® but the pore size
distributions are usually not very uniform thus unfavorable
for CO, uptake at low pressure. Direct carbonization of highly
porous PAFs to reduce the pore size in order to enhance CO,
uptake capacity has also been recently reported,'* but the
enhancement was not very dramatic due to the remaining pore
size being over 1.0 nm. To further narrow down the pore size
with uniform distribution, herein, we report a new strategy of
pre-introducing an extra carbon source into a PAF followed by
carbonization, which afforded a new microporous carbon
material with a small pore size of 5.4 A thus facilitating a high
CO, uptake capacity of 4.1 mmol g~ * at 295 K and 1 bar.

We selected PAF-1'? for “proof-of-concept” studies consider-
ing its relatively large pore size and framework robustness as
well as readiness for post-synthetic modification. To introduce
an extra carbon source into PAF-1 (Scheme 1), we first post-
grafted it with sulfonic acid, which can serve as the catalytic site
for the polymerization of furfuryl alcohol (FA)."”** The resulting
PAF-1-SO;H was then stirred in FA for two days, during which
the adsorbed FA was catalyzed by the grafted sulfonic acid to
polymerize within the pores of PAF-1. After careful filtration and
washing with ethanol to remove FA physically adsorbed on the
exterior surface, the obtained FA-PAF-1-SO;H composite was
heated at 900 °C under an inert gas atmosphere for 8 h to afford
the carbonized material, which is designated as PAF-1/C-900.

Powder X-ray diffraction (PXRD) patterns of PAF-1/C-900
(Fig. S1, ESIt) display two broad peaks at around 23° and 43°,
corresponding to carbon (002) and (101) diffractions respec-
tively. These results indicate the amorphous feature of PAF-1/
C-900. Transmission electron microscopy (TEM) studies sug-
gest that PAF-1/C-900 exhibits wormhole-like micropores
(Fig. 1), and it is essentially amorphous, which is consistent
with PXRD analysis.
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Scheme 1 Schematic illustration of the procedures for the preparation of
PAF-1/C-900.

Fig. 1 TEM images of PAF-1/C-900 at different magnifications.

The N, adsorption isotherm collected at 77 K (Fig. 2a)
reveals that PAF-1/C-900 exhibits typical type-I adsorption
behavior, a characteristic of microporous materials. Its uptake
capacity at the saturation pressure (P/P, = 0.95) is 316 cm® g™,
which is much lower than that of PAF-1 (1546 cm® g™ '). This
means a dramatic drop in the Brunauer-Emmett-Teller (BET)
surface area from 4246 m”> g~ " for PAF-1 to 1174 m”> g~ ' for PAF-1/
C-900 (Table S1, ESIt). Direct carbonization of PAF-1 at 900 °C
also led to a remarkable decrease in surface area of the resulting
material, PAF-1-900, which exhibits an even lower BET surface
area of 923 m> g~ ' as derived from the N, adsorption isotherm at
77 K. Pore size distribution analysis based on the Horvath-
Kawazoe (HK) model (Fig. 2b), which is widely employed for
micropore size analysis,* indicates that the pore size of PAF-1/
C-900 is predominantly distributed around 5.4 A in comparison
with 14.5 A for PAF-1 and 9.4 A for PAF-1-900 (Table S1, ESIT).
These results thus highlight the effectiveness of our strategy in
further narrowing down the pore size by pre-introducing an extra
carbon source compared with the direct carbonization method.

Given that the pore size of PAF-1/C-900 falls in the range of
4 Ato 8 A, we decided to assess its low pressure CO, adsorption
performances. CO, adsorption isotherms collected at 295 K
show that PAF-1/C-900 can adsorb a large amount of CO, with
an uptake capacity of 93 cm® g~ ' (equivalent to 4.1 mmol g~ " or
18.2 wt%) under 1 atm of pressure, meaning an enhancement
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Fig. 2 (a) N, adsorption isotherms at 77 K and (b) pore size distributions
(H-K model) for PAF-1, PAF-1/C-900, and PAF-1-900.
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Fig. 3 CO, adsorption isotherms of PAF-1/C-900 and PAF-1 at 295 K.

by a factor of 2.4 compared to parent PAF-1 (27 cm® g™ or
1.2 mmol g~ ' or 5.3 wt%) under the same conditions (Fig. 3).
A higher uptake capacity of 135 cm® g~* (or 6.0 mmol g~ or
26.5 wt%) is observed for PAF-1/C-900 at 273 K and 1 bar. In
comparison, at 295 K and 1 bar, PAF-1-900 exhibits a lower CO,
uptake capacity of 79 cm® g~* (or 3.5 mmol g~ or 15.5 wt%)
and a much lower CO, adsorption capacity of 26 cm® g~ * (or
1.2 mmol g~" or 5.1 wt%) is observed for carbonized poly(FA)
(Fig. S4, ESIT). These results thus validate our strategy of pre-
introducing an extra carbon source into a PAF followed by
carbonization for enhancing the CO, uptake capacity. It is
worth noting that the CO, uptake capacity of PAF-1/C-900 at
295 K and 1 bar is among the highest for porous carbon
materials reported thus far.'> PAF-1/C-900 outperforms
P-C450"° (4.5 mmol g~ " at 273 K and 1 bar) which is resulted
from directly carbonizing PAF-1 at 450 °C without introducing
an extra carbon source, and it also surpasses the sulfonic acid
grafted porous organic polymers, PPN-6-SO;H (3.6 mmol g * at
295 K and 1 bar) and PPN-6-SO;Li (3.7 mmol g~ " at 295 K and
1 bar);*” yet it is comparable to the aliphatic amine-tethered
porous organic polymer, PPN-6-CH,DETA (4.3 mmol g~ ' at
295 K and 1 bar).®” The CO, uptake capacity of PAF-1/C-900
at 295 K and 1 bar also exceeds that of ZIFs (e.g. 9.1 wt% for
the best ZIF of ZIF-78”¢ at 298 K and 1 bar),>*** most MOFs
(e.g. 15.4 wt% for mmen-Cu-BTTri’° and 15.2 wt% for bio-
MOF-117 at 298 K and 1 bar)*** and most zeolite materials
(e.g. 3.1 mmol g ' for Na-A'® at 298 K and 1 bar)'® under
similar conditions.

This journal is © The Royal Society of Chemistry 2013
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Fig. 4 Heats of adsorption of CO, for PAF-1/C-900 and PAF-1.

It has been well-documented that narrow pores can strengthen
the interaction between pore walls and CO, molecules due to the
overlap of potential fields of the opposite pore walls.>**'” We
calculated the heats of adsorption (Qy) of CO, for PAF-1/C-900 and
PAF-1 based on the CO, adsorption isotherms at 273 K and 295 K
using the virial method."® As shown in Fig. 4, PAF-1/C-900 exhibits
a Qg of ~27.0 k] mol™ " at zero-loading, which is 11.6 k] mol "
higher than that of PAF-1 (Qy of 15.4 kJ mol "). These results
further validate the contribution of narrow pores to the remark-
able enhancement of CO, uptake in PAF-1/C-900.

In summary, pre-introducing an extra carbon source into
PAF-1 followed by carbonization at 900 °C afforded a micro-
porous carbon material, PAF-1/C-900, with a small pore size
of ~5.4 A. As a result of the substantially reduced pore size,
PAF-1/C-900 demonstrates remarkable enhancement of CO,
uptake capacity at 295 K and 1 bar by a factor of ~2.4 and a
dramatic increase in Qg of CO, by 11.6 k] mol " at zero-loading
compared to the parent PAF-1. The strategy of pre-introducing
extra carbon sources into the POP materials followed by thermo-
lysis represents a promising approach to create microporous
carbon materials with very narrow pores (<8 A), which could
hold promise for CO, capture applications. Ongoing work in our
laboratory includes the design and synthesis of other types of
functional porous materials for application in CO, capture,
sensors and catalysis.

The authors acknowledge the University of South Florida for
financial support of this work.
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