Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters

Yanming Zhao,‡,§ Shibo Qi,‖ Zheng Niu,‡ Yunlei Peng,‡ Chuan Shan,‡ Gaurav Verma,‡ Lukasz Wojtas,‡ Zhenjie Zhang,‖ Bao Zhang,*,†‡ Qiang Feng,‡,§ Yu-Sheng Chen,†§ and Shengqian Ma*†‡

†School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People’s Republic of China
‡Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
§Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
‖School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China
¶College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
#ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

Supporting Information

ABSTRACT: The corrole unit from the porphyrinoid family represents one of the most important ligands in the field of coordination chemistry, which creates a unique environment allowing for the observation of unusual electronic states of bound metal cations and has shown great promise in various applications. Nevertheless, studies that directly and systematically introduce these motifs in porous crystalline materials for targeting further functionalizations are still lacking. Herein, we report for the first time the construction of two robust corrole-based metal–organic frameworks (MOFs), M₆(µ₃-O)₂(µ₃-OH)₄(OH)₃(H₂O)₂(H₃TCPC)₃ (M = Zr for Corrole-MOF-1 and M = Hf for Corrole-MOF-2, H₃TCPC = 5,10,15-tris(p-carboxyphenyl)corrole), which are assembled by a custom-designed C₃-symmetric corrolic tricarboxylate ligand and the unprecedented Dₓ₅-symmetric 9-connected Zr₆/Hf₆ clusters. The resultant frameworks feature a rare (3,9)-connected gyf net and exhibit high chemical stability in aqueous solutions within a wide range of pH values. Furthermore, we successfully prepared the cationic Corrole-MOF-1(Fe) from the iron corrole ligand, which can serve as an efficient heterogeneous catalyst for [4 + 2] hetero-Diels–Alder reactions between unactivated aldehydes and a simple diene, outperforming both the homogeneous counterpart and the porphyrinic MOF counterpart.

INTRODUCTION

Metal–organic frameworks (MOFs), an emerging class of inorganic–organic hybrid crystalline materials, have evoked great interest due to their high porosity/internal surface areas, structural diversity, and chemical tailorability.¹,² They have attractive potential in various applications ranging from gas storage/separation³,⁴ to proton conduction,⁵ biomedicine,⁶ and catalysis,⁷ to name only a few. Moreover, the tunable nature of MOFs furnishes a prominent advantage over other porous materials in that their further functionalizations can be readily realized by postsynthetic modification toward linkers and/or metal clusters,⁸,⁹ construction of MOF composites by encapsulating active materials such as enzymes,¹⁰,¹¹ metal nanoparticles,¹²,¹³ and organometallic species¹⁴ into the frameworks, or inclusion of functional ligands such as metal complexes as the building units,¹⁵ among which the direct introduction of new promising organic linkers represents one of the most straightforward yet effective methods to target functional MOFs.

Porphyrinoid macrocyclic complexes that can be fine-tuned for specific purposes play important roles in many chemical and biological processes.¹⁷ Among these compounds, corroles pertaining to contracted porphyrin analogues, which hold the 18-π-conjugated structure bearing a direct pyrrole–pyrrole link, have received growing attention because of their unusual photophysical properties and electronic states of bound metal cations as well as the powerful capability of stabilizing high-valent transition metals.¹⁸ These features have made them exhibit distinct advantages over other compounds, especially...
when they are metallized for use as catalysts, whose utilizations are highlighted in the potent catalase-like activity for decomposing reactive oxygen/nitrogen species, the ability to enable both O₂ activation and O=O bond formation reactions, etc. However, despite the success of developing metallocorroles in applications of homogeneous catalysis, it still encounters some limitations: poor recyclability and stability in solutions lead to a decreased catalyst lifetime, while the large π-conjugated system of corrole complexes prompts the deactivation of the catalyst via intermolecular pathways. Such limitations can be overcome via heterogenization of corrole-induced homogeneous catalysis; however, this has barely been achieved.

The tremendous development of MOFs suggests a promising route to resolve the aforementioned issues via incorporation of corrole moieties into an MOF framework, which can couple the interesting properties of corroles and the superiorities of MOF structures to afford efficient heterogeneous catalysis. Nevertheless, to the best of our knowledge, to date there have been no reports of corrole-based MOFs, likely due to challenges in structural design and control, in which the unusual approximately T-shaped geometry of corrole ligands impedes the construction of an MOF structure, in contrast to most traditional cases where the high symmetry-guided design is expected to result in the anticipated topology.

In this context, Zr/Hf-oxo clusters as secondary building units (SBUs) are of particular interest in targeting desired MOFs, because of the variation of their connecting numbers and symmetry that could provide many topological possibilities to form different frameworks. For instance, the connectivity of Z₆₆ nodes can be tuned to be 4-, 6-, 8-, 10-, or 12-connected (Scheme 1) by ditopic, tritopic, tetraprotic, or hexaprotic linkers, respectively.

Scheme 1. Connectivity of Z₆₆ Clusters

"The connectivity refers to the number of carboxylate groups from organic linkers in the extended framework coordinated to the Z₆₆ cluster (white, hydrogen; gray, carbon; red, oxygen; yellow, nitrogen; aqua, zirconium)."

which offers a formidable means to modulate the degree of freedom at the intersections between the metal nodes and organic linkers. Especially, the systematically studied porphyrin-based Zr-MOFs give different structures that contain clusters with the aforementioned connectivities with the exception of the 4- and 10-connected nodes, wherein a combination of the identical porphyrin ligands and 8-connected Z₆₆ clusters can assemble into a variety of network topologies including csq (PCN-222), sqc (PCN-225), and scu (NU-902) through the adjustment of synthetic conditions. These studies prompt us to explore the construction of corrole-based Zr-MOFs, and we anticipate their structures will most likely differ substantially from those reported given the geometrical uniqueness of the corrole linker (Figure 1a), which could direct the in situ formation of some new SBUs.

Herein, for the first time, we report two stable corrole-based MOFs, Corrole-MOF-1 and -2, which are constructed from the custom-designed C₁₅-symmetric tridentate corrole ligand H₃TCP (5,10,15-tris(5-carboxylphenyl)corrole) and the unprecedented D₂₅-symmetric 9-connected Z₆₆/He₆ clusters (Scheme 1), respectively, featuring a rare (3,9)-connected gfy network (Figure 1c). Both Corrole-MOFs exhibit uniform one-dimensional (1D) hexagonal open channels of 23.4 Å. Corrole-MOF-1(Fe) has also been successfully prepared from the iron corrole ligand FeTCPCCl and the Z₆₆ cluster, which can efficiently catalyze hetero-Diels–Alder (HDA) reactions between unactivated aldehydes and a simple diene, outperforming both the homogeneous counterpart and the porphyrinic MOF counterpart.

EXPERIMENTAL SECTION

General Information. The commercial chemicals were used as purchased unless otherwise mentioned. The H₃TCP and FeTCPCCl ligands were prepared according to procedures described in **Section 1** in the Supporting Information.

Instrumentation. Powder X-ray diffraction (PXRD) data were collected on a Bruker AXS D8 Advance A25 Powder X-ray diffractometer (40 kV, 40 mA) using Cu Kα (λ = 1.5406 Å) radiation. Gas sorption isotherm measurements were carried out on a Micromeritics ASAP 2020 instrument with different temperatures. N₂ isotherms were performed at 77 K, with the temperature held constant using a liquid N₂ bath. Fourier transform infrared spectra (FTIR) were recorded on a Nicolet Impact 410 FTIR spectrometer. Thermogravimetric analyses (TGA) were carried out on a Q50 thermogravimetric analyzer under a nitrogen atmosphere. Elemental analyses were performed on a PerkinElmer series II CHNS analyzer 2400. Nuclear magnetic resonance (NMR) data were recorded on a Bruker Avance–400 (400 MHz) spectrometer. MALDI-TOF-MS was obtained with a Bruker Autoflex TOF/TOF III instrument. UV–vis absorption spectra were conducted on a JASCO Model V-670 spectrometer. Scanning electron microscopy (SEM) images and energy dispersive spectrometer (EDS) analyses were performed on a Hitachi SU 8000. All of the Corrole-MOFs were activated by supercritical CO₂ performed on a Tousimis Samdri PVT-30 critical point dryer.

Synthesis of Corrole-MOF-1. In a 5 mL glass vial, ZrCl₄ (0.054 mmol, 3.0 equiv), H₃TCP (0.018 mmol, 1.0 equiv), and benzoic acid (1.8 mmol, 100 equiv) were dissolved in N,N-dimethylformamide (DMF, 1.0 mL) via sonication (30 min). The green solution was heated at 120 °C for 72 h in an oven. After the mixture was cooled to room temperature, hexagonal purple crystals were harvested by filtration (yield 87%). Anal. Calcd: C, 52.77; H, 2.20; N, 6.16. Found: C, 52.67; H, 2.20; N, 6.16.

Synthesis of Corrole-MOF-2. In a 5 mL glass vial, H₃TCP (0.054 mmol, 3.0 equiv), H₂TCP (0.018 mmol, 1.0 equiv), and benzoic acid (1.8 mmol, 100 equiv) were dissolved in DMF (1.0 mL) via sonication (30 min). The green solution was heated at 120 °C for 72 h in an oven. After the mixture was cooled to room temperature, hexagonal purple crystals were harvested by filtration (yield 73%). Anal. Calcd (%): C, 44.28; H, 1.85; N, 5.17. Found (%): C, 44.73; H, 1.92; N, 4.98.

Synthesis of Corrole-MOF-1(Fe). In a 5 mL glass vial, ZrCl₄ (0.054 mmol, 3.0 equiv), FeTCPCCl (0.018 mmol, 1.0 equiv), and acetic acid (7.87 mmol, 437 equiv) were dissolved in DMF (1.0 mL) via sonication (30 min). The brown solution was heated at 120 °C for...
72 h in an oven. After the mixture was cooled to room temperature, brown powders were obtained for characterization (yield 84%). Anal. Calcd (%): C, 51.10; H, 2.02; N, 5.96. Found (%): C, 51.46; H, 2.13; N, 5.77. Purple hexagonal single crystals of Corrole-MOF-1 and -2 with suitable sizes for single-crystal X-ray diffraction have been obtained in our experiments. Corrole-MOF-1(Fe) was confirmed by a powder X-ray diffraction pattern.

Single-Crystal X-ray Crystallography. The X-ray diffraction data for Corrole-MOF-1 were measured on a Bruker D8 Venture PHOTON II CPAD system equipped with a Cu Kα INCOATEC ImuS microfocus source (λ = 1.54178 Å). The X-ray diffraction data for Corrole-MOF-2 were collected using synchrotron radiation (λ = 0.41328 Å) at the Advanced Photon Source, Beamline 15-ID-B of ChemMatCARS in Argonne National Laboratory, Argonne, IL. Indexing was performed using APEX3 (Difference Vectors method). Data integration and reduction were performed using SaintPlus. Absorption correction was performed by a multiscan method implemented in SADABS. Space groups were determined using SHELXL-2018 (full-matrix least-squares refinement method). The contribution of disordered content was visibly observed disorder could possibly be due to two possible conformations of the benzoate part perpendicular to the c crystallographic direction that would result in two possible orientations of the metal cluster rotated by 60°. Disordered atoms were refined with restraints. The contribution of disordered content in structural voids in both cases was treated as diffuse using the Squeeze procedure implemented in the Platon program. Crystallographic data and structural refinements for Corrole-MOF-1 and -2 are summarized in Table S1 in the Supporting Information. The CIF files can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (CCDC 1939968 for Corrole-MOF-1, CCDC 1939478 for Corrole-MOF-2).

Sample Activation and Gas Sorption Measurement. Before a gas sorption experiment, as-synthesized Corrole-MOF samples (~60 mg) were washed three times with DMF and three times with methanol, followed by soaking in methanol for 72 h to allow solvent exchange. During the solvent exchange process, the methanol was decanted and replaced with fresh solvent for three times every 24 h. After that, the Corrole-MOF powders were isolated by centrifugation. Then, the resulting exchanged frameworks were activated by supercritical CO2 (detailed procedures are given in Section 6 in the Supporting Information), prior to gas sorption measurement.

Stability Test. For a solvent stability study, small amounts of freshly synthesized Corrole-MOF-1 (~10 mg) were placed in different vials containing 3 mL of solvent or aqueous solution with a certain pH value. After 24 h, the samples were washed twice with fresh DMF for PXRD measurements or activated by supercritical CO2 for N2 adsorption tests.

Catalysis. An oven-dried Schlenk tube was charged with Corrole-MOF-1(Fe) (0.02 mmol) and AgBF4 (0.1 mmol) under a dry nitrogen atmosphere in a glovebox. Dry CH2Cl2 (2.0 mL) was added by syringe. The mixture was stirred for 3 h at room temperature. Then to the mixture were added aldehyde (1.0 mmol), the diene (4.0 mmol), and dry toluene (6.0 mL) under the nitrogen protection in the glovebox. The tube was sealed and heated to 80 °C. After 24 h, the reactor was cooled to room temperature and depressurized. A1H NMR analysis in conjugation with column chromatography isolation were employed to determine the conversion. The reaction solution was centrifuged to recover the catalyst for the next cycle. The recovered MOF powders were washed with DMF and methanol and activated by supercritical CO2. The structural stability of the framework after three recycles was confirmed by PXRD.

Figure 1. Crystal structure, structural components, and underlying network topology of Corrole-MOF-1 after removal of disorder: (a) tricarboxylic corrole linker, H2TCPC; (b) D5r-symmetric 9-connected Zr6 cluster; (c) schematic representation of the (3,9)-connected net for Corrole-MOF-1 framework; (d, e) View of Corrole-MOF-1 along the c and a axes, respectively, with uniform 1D open channels; (f, g) magnified parts in the structure displaying the connectivity between corrole ligands and Zr6 clusters. The Zr, C, O, and N atoms are shown as aqua, black, red, and blue spheres, respectively. H atoms are omitted for clarity.
RESULTS AND DISCUSSION

Hexagon-shaped single crystals of Corrole-MOF-1 and -2, \(M_4(\mu_1-O)_4(\mu_2-OH)_2(OH)_2(H_2O)_2(H_3TCPCCl)_3\) (\(M = \text{Zr for 1 and } M = \text{Hf for 2}\)), were obtained by a solvothermal reaction of ZrCl\(_4\) or HfCl\(_4\) with H\(_3\)TCP in DMF in the presence of benzoic acid at 120 °C. Similar conditions afforded the polycrystalline Corrole-MOF-1(Fe) of \(M_4(\mu_1-O)_4(\mu_2-OH)_2(OH)_2(H_2O)_2(\text{FeTCPCCl})_3\) with the addition of acetic acid. PXRD patterns suggested that these MOFs have the same framework topology (Figure 2a), and the structure of Corrole-MOF-1 will be discussed below as a representative.

![Figure 2](image-url)

Figure 2. (a) PXRD patterns and (b) \(N_2\) sorption isotherms for Corrole-MOF-1, Corrole-MOF-1(Fe), and Corrole-MOF-2 at 77 K. The inset shows pore size distributions.

Single-crystal X-ray diffraction studies revealed that both Corrole-MOF-1 and -2 crystallize in the hexagonal space group \(P6_3/mmc\). The structure of Corrole-MOF-1 involves 9-connected \(\text{Zr}_6(\mu_1-O)_4(\mu_2-OH)_2(OH)_2(H_2O)_2(\text{COO})_9\) SBUs, which are linked through 3-connected TCPP\(^+\) ligands to form a 3D framework containing large hexagonal 1D open channels along the \(c\) axis (Figure 1d and e). The SBU is composed of six Zr atoms assembled into an octahedral \(\text{Zr}_6(\mu_1-O)_4(\mu_2-OH)_4\) cluster core where only nine edges are bridged by the carboxylates from TCPP\(^+\) linkers, while the remaining six positions are occupied by \(\mu_2\text{-O}^{2-}/\text{OH}^-\) groups (Figure 1b). In comparison with the well-known 12-c \(\text{Zr}_6\) cluster,\(^{13}\) the symmetry of the 9-c \(\text{Zr}_6\) cluster is reduced from \(O_{h}\) to \(D_{6h}\) which is affected by the approximately T-shaped geometry of \(H_2\text{TCP}\) (Figures S5–S7 in the Supporting Information). The solvent-accessible volumes in Corrole-MOF-1 and -2 are calculated to be 68.8 and 68.5% respectively, using the PLATON routine.\(^{33}\) Topologically, the \(H_2\text{TCP}\) ligand and \(\text{Zr}_6\) cluster can be respectively viewed as 3- and 9-c nodes. Thus, the Corrole-MOF-1 framework is classified as a 3D \((3,9)\)-connected \(gfy\) net with the point symbol of \((4^{12}6^{15}\) \(8^{4}\))\(^3\), calculated using the TOPOS program (Figure 1c). There have been very few \((3,9)\)-c MOFs reported,\(^{34}\) and Corrole-MOF-1 represents the first example of a zirconium MOF with \((3,9)\)-c \(gfy\) topology.

\(N_2\) sorption isotherms were collected at 77 K to evaluate the porosity of Corrole-MOFs (Figure 2b). The typical type IV isotherm of Corrole-MOF-1 shows a steep increase at \(P/P_0 = 0.15\) with a significant hysteresis loop, characteristic of mesoporous materials. On the basis of the \(N_2\) adsorption data, a Brunauer–Emmett–Teller (BET) surface area of 2545 m\(^2\) g\(^{-1}\) and a total pore volume of 1.63 cm\(^3\) g\(^{-1}\) were calculated for Corrole-MOF-1 upon activation with acid aqueous solutions (Figure S16 in the Supporting Information). The pore size distribution calculated by density functional theory (DFT) from the \(N_2\) sorption curve indicates that the pores of Corrole-MOF-1 are predominantly distributed at 12.7 and 23.4 Å, assignable to the microporous channels along the \(a\) and \(b\) axes and the mesoporous hexagonal channels along the \(c\) axis respectively, which are consistent with the crystallographic data when the van der Waals contact is taken into account (Figures 1 and 2b). The BET surface areas of Corrole-MOF-1(Fe) and Corrole-MOF-2 are 2145 and 1662 m\(^2\) g\(^{-1}\), respectively, as estimated from the \(N_2\) sorption isotherms (Figure 2b and Table S2 in the Supporting Information). Thermogravimetric analyses indicated that the Corrole-MOFs are stable up to 350 °C under a nitrogen atmosphere (Figure S11 in the Supporting Information).

Although Corrole-MOF-1 is built from the low-symmetry ligand and \(\text{Zr}_6\) clusters with relatively low connectivity among \(\text{Zr}-\text{MOFs},^\text{35}\) it still demonstrates excellent chemical stability in various solvents and aqueous solutions of a wide pH range. After treatment under these various conditions, the PXRD patterns of Corrole-MOF-1 remain intact, suggesting the retention of crystallinity and structural integrity (Figure 3a and Figure S28 in the Supporting Information). To further investigate the stability of Corrole-MOF-1, \(N_2\) sorption isotherms were measured after immersing samples in water, boiling water, and pH 2 and 11 aqueous solutions for 24 h. The \(N_2\) uptakes of Corrole-MOF-1 after different treatments are comparable to that of the pristine sample, indicative of the robustness of the framework under harsh conditions (Figure 3b and Table S3 in the Supporting Information). Such excellent chemical stability of Corrole-MOFs makes them hold promise for many applications.

The employment of Corrole-MOFs as heterogeneous catalysts was examined in the context of investigating the Lewis acid catalytic activity of Corrole-MOF-1(Fe) for the \([4 + 2]\) Hetero-Diels–Alder (HDA) reaction between unactivated aldehydes and a simple diene. HDA reactions have been viewed as some of the very efficient and atom-economical approaches for the synthesis of dihydropyrans, an important class of ubiquitous motifs in biologically active compounds.\(^{31}\) In general, HDA reactions between unactivated aldehydes and dienes require strong Brønsted acids or Lewis acids, which limit the substrate choice due to low functional group tolerance.\(^{35}\) To overcome these drawbacks, a breakthrough using cationic iron macrocycle complexes such as iron(III) porphyrin and iron(IV) corrole as homogeneous catalysts can efficiently catalyze HDA reactions between unreactive aldehydes and dienes under mild reaction conditions.\(^{21a,36}\)
However, it should be noted that homogeneous corrole-based catalysts normally suffer from poor stability and recyclability.22 The incorporation of corrole complexes into MOFs for use in heterogeneous systems would offer an effective strategy to improve the catalyst lifetime and to make the catalyst prone to be recoverable. Meanwhile, the deactivation of the catalyst via intermolecular pathways can also be well-restrained, which facilitates the catalytic processes. As expected, the integration of excellent chemical stability, large porosity and surface areas, and high density of catalytically active sites makes Corrole-MOF-1(Fe) an excellent heterogeneous catalyst for this reaction.

Notwithstanding, only a trace amount of product 3a was obtained when Corrole-MOF-1(Fe) was used as the catalyst in the reaction of benzaldehyde (1a) with 2,3-dimethyl-1,3-butadiene (2), probably due to the presence of a strong axially coordinating chloride anion on the catalytic iron center blocking the catalytic process (Table S4, entry 2, in the Supporting Information). To remedy this, the cationic catalyst [Corrole-MOF-1(Fe)]BF\textsubscript{4} was prepared by treating Corrole-MOF-1(Fe) with AgBF\textsubscript{4}, in order to weaken the coordination strength of the counteranion.36,37 Encouragingly, the reaction of 1a with 2 in the presence of [Corrole-MOF-1(Fe)]BF\textsubscript{4} (2 mol %) in toluene at 80 °C for 24 h afforded dihydropyran 3a in 96% yield (93% isolated yield) in comparison to only 67% yield in the presence of the homogeneous ester-corrole catalyst Fe(TCMPC)BF\textsubscript{4} (Table 1, entries 1 and 2). The enhanced catalytic activity of [Corrole-MOF-1(Fe)]BF\textsubscript{4} in comparison with the homogeneous system presumably originates from the high porosity, facilitating mass transport and maximizing the accessibility of catalytic sites. Additionally, the presence of strongly electron withdrawing units including three carboxylate groups attached to the corrole ring and the zirconium clusters could decrease the electron density of iron(IV) in the corrole ligands, which further increases the polarizability of the iron center, thus enhancing the catalytic performance (Figure S30 in the Supporting Information).37,38 Free base Corrole-MOF-1 is inactive for the HDA reaction (Table S4, entry 1, in the Supporting Information), meaning there is a minimal

<table>
<thead>
<tr>
<th>entry</th>
<th>product</th>
<th>catalyst</th>
<th>yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>93 (96)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Fe(TCMPC)BF\textsubscript{4}</td>
<td>67b</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>PCN-224(Fe)BF\textsubscript{4}</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>77</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>94</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>[Corrole-MOF-1(Fe)]BF\textsubscript{4}</td>
<td>89</td>
</tr>
</tbody>
</table>

a Reaction conditions: catalyst (2 mol %), aldehyde (1.0 mmol), and diene (4.0 mmol) in 6.0 mL of toluene at 80 °C.b Isolated yield (yield in parentheses is calculated by 1H NMR with mesitylene as the internal standard). c Yield determined by 1H NMR (homogeneous catalysis). d Porphyrinic MOF PCN-224(Fe)BF\textsubscript{4} as the catalyst.

Figure 3. (a) PXRD patterns and (b) N\textsubscript{2} sorption isotherms for Corrole-MOF-1 at 77 K, showing the framework stability upon treatment with water, boiling water, and aqueous solutions with pH values of 2 and 11.
In conclusion, zirconium- and hafnium-corrole frameworks, Corrole-MOF-1 and -2, have been constructed for the first time employing a custom-designed corrole ligand and the unprecedented 9-connected Zr6/Hf6 clusters. The resultant Corrole-MOFs possess a very rare (3,9)-c gyro network and feature 1D hexagonal mesoporous open channels as well as demonstrate high chemical stability and framework robustness. The exploration of corrole-based MOFs as heterogeneous catalysts has been demonstrated in the context of [Corrole-MOF-1(Fe)]BF4-catalyzed hetero-Diels–Alder reactions of unactivated aldehydes with a simple diene, which exhibits excellent performance surpassing both the homogeneous counterpart and porphyrinic MOF counterpart. Our studies not only enrich the family of MOFs but also pave the way for the development of corrole-functionalized porous materials in a broader range of applications.

ACKNOWLEDGMENTS

The authors acknowledge the China International Science and Technology Project (NO. 2016YFE0114900), National Natural Science Foundation of China (NO. 21761132007), China Scholarship Council (CSC) (NO. 201706250095), United States National Science Foundation (DMR-1352065), and the University of South Florida for financial support of this work.

REFERENCES

Tuning the structure and function of metal-organic frameworks via...

Journal of the American Chemical Society

DOI: 10.1021/jacs.9b07700
J. Am. Chem. Soc. 2019, 141, 14443−14450

