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ABSTRACT: We demonstrate the successful functionalization of a
porous aromatic framework for uranium extraction from water as
exemplified by grafting PAF-1 with the uranyl chelating amidoxime
group. The resultant amidoxime-functionalized PAF-1 (PAF-1-CH2AO)
exhibits a high uranium uptake capacity of over 300 mg g−1 and
effectively reduces the uranyl concentration from 4.1 ppm to less than
1.0 ppb in aqueous solutions within 90 min, well below the acceptable
limit of 30 ppb set by the US Environmental Protection Agency. The
local coordination environment of uranium in PAF-1-CH2AO is
revealed by X-ray absorption fine structure spectroscopic studies,
which suggest the cooperative binding between UO2

2+ and adjacent
amidoxime species.

KEYWORDS: porous aromatic framework, uranium adsorption, amidoxime chelating group, postsynthetic modification,
radionuclide migration

■ INTRODUCTION

The development of technologies for efficient extraction of
uranium from aqueous solutions has long been of great
interest.1−3 This is primarily prompted by two incentives: one
is the energy perspective, given uranium is the main fuel for
nuclear energy with its largest source in seawater but at
extremely low concentrations (3−3.3 ppb);4 the other is the
environmental perspective, since uranium is the dominant
component of nuclear waste and has hazardous effects on the
environment, ecosystem, and human health.5 Various adsorbent
technologies based upon synthetic organic polymers,6−11

biopolymers,12,13 inorganic materials,14−18 mesoporous silica
materials,19,20 porous carbon-based adsorbents,21,22 ionic
liquids,23 and metal−organic frameworks (MOFs)24−26 have
been explored for uranium adsorption. However, these
benchmark sorbent materials suffer from a number of
drawbacks such as low adsorption capacity, slow kinetics,
weak binding affinity, and poor water/chemical stability. Hence,
there is still a need to develop new adsorbent materials for
efficient uranium extraction from aqueous solutions.
Emerging as a new class of adsorbent materials, porous

organic polymers (POPs)27−29 have recently attracted increas-
ing interest because of their high surface areas, tunable pore
sizes, and with the ability to incorporate specific functionality.
POPs thus have great potential for various applications, such as
gas storage/separation,30−32 CO2 capture,33,34 hydrocarbon
adsorption,35 catalysis,36−41 environmental remediation,42,43

and more.44,45 Compared with other types of porous
materials,46−51 POPs feature robust covalent framework
structures with high water and chemical stability, making
them practically useful under harsh conditions. Additionally,
their pore walls can be decorated with functional organic
groups to selectively capture targeted guest species,52 offering
an opportunity for the development of new types of adsorbent
materials for uranium extraction from water. In this
contribution, we demonstrate the successful decoration of a
POP with uranyl chelating groups; the resultant functionalized
POP exhibits a high uranium uptake capacity of over 300 mg
g−1 and can effectively reduce the uranyl concentration from 4.1
ppm to less than 1.0 ppb in aqueous solutions within 90 min,
well below the acceptable limit of 30 ppb defined by the US
Environmental Protection Agency (EPA).

■ EXPERIMENTAL SECTION
Materials. All reagents were purchased from Sigma-Aldrich or Alfa

and used as received unless otherwise indicated. PAF-153,54 was
synthesized according to previously reported procedures.

Adsorbent Synthesis. Synthesis of PAF-1-CH2Cl. A resealable
flask was charged with PAF-1 (200.0 mg), paraformaldehyde (1.0 g),
glacial AcOH (6.0 mL), H3PO4 (3.0 mL) and concentrated HCl (20.0
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mL). The flask was sealed and heated to 90 °C for 3 days. The
resulting solid was filtered, washed with water and methanol, and then
dried under vacuum to yield a yellow solid denoted as PAF-1-CH2Cl.
Synthesis of PAF-1-CH2CN. The cyano-functionalized PAF-1 was

synthesized by treating PAF-1-CH2Cl (200 mg) with NaCN in 30 mL
of EtOH at 80 °C for 3 days under N2. After being cooled down, the
resulting solid was filtered, washed with water and methanol, and then
dried under vacuum to yield a light yellow solid denoted as PAF-1-
CH2CN.
Synthesis of PAF-1-CH2AO. The amidoxime-functionalized PAF-1

(PAF-1-CH2AO) was synthesized by treating PAF-1-CH2CN (200
mg) with NH2OH aqueous solution (50 wt %, 10 mL) and K2CO3
(100 mg) in ethanol (20 mL) at 70 °C for 48 h to convert the cyano
groups into amidoxime. After being cooled down, the PAF-1-CH2AO,
as an off-white solid, was obtained by filtration, washing with water,
and drying under vacuum. The sorbent was treated with 3% (w/w)
aqueous potassium hydroxide solution at room temperature for 36 h
before uranium adsorption measurements.
Sorption Tests. Sorption Isotherm Tests. Samples of 20 mL water

were prepared with UO2
2+ concentrations in the range 8.6−165.7 ppm

at pH ∼ 6. 5 mg of PAF-1-CH2AO was added to each sample and with
continuous stirring at RT overnight. The treated solutions were
filtrated through a 0.45 μm membrane filter. The supernatant was
analyzed using ICP-OES to determine the remaining UO2

2+

concentration. A sample of UO2
2+ solution without sorbent material

was analyzed during each sorption experiment as a negative control.
The sorption capacity qe (mg g−1) of UO2

2+ was calculated with the
following equation:

=
−

q
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m
( )
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where C0 and Ce are the concentration of UO2
2+ initially and at

equilibrium, respectively. V is the volume of solution, and m is the
mass of sorbent used.
UO2

2+ Sorption Kinetic Tests. UO2
2+ aqueous solution (300 mL,

7.36 ppm, pH ∼ 6) and PAF-1-CH2AO (3 mg) were added to an
Erlenmeyer flask with a magnetic stir bar. The mixture was then stirred
at room temperature. At appropriate time intervals, aliquots (5 mL)
were taken from the mixture, and the adsorbents were separated by
syringe filter (0.45 μm membrane filter). The UO2

2+ concentration for
0, 10, 20, 30, 60, 90, and 120 min in the resulting solutions were
analyzed by ICP-OES. The sorption capacity qt (mg g

−1) of UO2
2+ was

calculated with the following equation:
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UO2
2+ Removal Efficiency Tests. UO2

2+ aqueous solution (200 mL,
4100 ppb, pH ∼ 6) and PAF-1-CH2AO (10 mg) were added to an
Erlenmeyer flask with a magnetic stir bar. The mixture was then stirred
at room temperature. At appropriate time intervals, aliquots (3 mL)
were taken from the mixture, and the adsorbents were separated by
syringe filter (0.45 μm membrane filter). The UO2

2+ concentration in
the resulting solutions were analyzed by ICP-MS. The percentage
removal of UO2

2+ was calculated as follows:

=
−

×
C C

C
removal percentage (%) 100t0

0

where C0 is the initial concentration of UO2
2+ and Ct is the UO2

2+

concentration at different times.
Simulated Seawater Uranium Adsorption Test. Simulated sea-

water was prepared as follows: sodium chloride (25.6 g, 438 mmol),
sodium bicarbonate (0.193 g, 2.3 mmol), and uranium nitrate
hexahydrate were dissolved in distilled water (1.0 L). UO2

2+ simulated
seawater solution (200 mL, 7.05 ppm) and PAF-1-CH2AO (5 mg)
were added to an Erlenmeyer flask with a magnetic stir bar. The
mixture was then stirred at room temperature. At appropriate time
intervals, aliquots (5 mL) were taken from the mixture, and the
adsorbents were separated by syringe filter (0.45 μm membrane filter).
The UO2

2+ concentration in the resulting solutions were analyzed by
ICP-OES.

Recyclability Test. After one run of adsorption, PAF-1-CH2AO was
regenerated by treatment with Na2CO3 (1 M) solution and washed
with water. After being dried under vacuum, the resultant material was
used for another adsorption experiment. It was found that after two
consecutive cycles PAF-1-CH2AO still showed excellent uranium
uptake. The testing conditions are listed as follows: UO2

2+ aqueous
solution (300 mL, ∼7.5 ppm) and PAF-1-CH2AO (3 mg) were added
to an Erlenmeyer flask with a magnetic stir bar. The mixture was then
stirred at room temperature. After 12 h, aliquots (5 mL) were taken
from the mixture, and the adsorbents were separated by syringe filter
(0.45 μm membrane filter). The UO2

2+ concentration in the resulting
solution was analyzed by ICP-OES. A sample of UO2

2+ solution
without sorbent material was analyzed during each sorption experi-
ment as a negative control.

■ RESULTS AND DISCUSSION

PAF-1 (cross-linked polytetraphenylmethane), which is also
known as PPN-6, was selected for our proof-of-principle
experiment due to its high surface area and exceptional stability
in water/moisture and acidic/basic media.53,54 Given its
excellent chelating ability with uranyl ions, the amidoxime
group was chosen to functionalize PAF-1. The amidoxime
functionalized PAF-1 (PAF-1-CH2AO) was synthesized by
chloromethylation of PAF-1 followed by treatment with NaCN
(PAF-1-CH2CN) and then amidoximation using hydroxyl-
amine (Scheme 1).55 The successful grafting of the amidoxime
group onto PAF-1 was confirmed by elemental analysis, Fourier
transform infrared spectroscopy (FT-IR), and solid-state 13C
NMR. Elemental analysis reveals a nitrogen content of 2.38 wt
% of PAF-1-CH2CN corresponding to 1.7 mmol g−1 CN
groups in PAF-1-CH2CN. In addition, the FT-IR spectrum of
PAF-1-CH2CN shows the characteristic band of the cyano
group at around 2251 cm−1, indicating the introduction of
cyano groups on the PAF-1. After amidoximation, the
disappearance of the CN peak at 2251 cm−1 together with
the appearance of CN (1638 cm−1), C−N (1381 cm−1), and
N−O (933 cm−1) in PAF-1-CH2AO verifies the successful

Scheme 1. Schematic Illustration of the Procedures for the Preparation of PAF-1-CH2AO: (a) AcOH, H3PO4, HCl; (b) NaCN;
(c) NH2·OH
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transformation of cyano groups to amidoxime groups (Figure
1a). Furthermore, the emergence of peaks at 33.0 and 153.8

ppm can be assigned to the carbon of the −CH2 group and
amidoxime group, respectively, in the solid-state 13C NMR
spectrum of PAF-1-CH2AO (Figure 1b) and confirms the
attachment of −CH2AO groups to PAF-1. To test the porosity
of the materials, nitrogen sorption isotherms were collected at
77 K. As a result of the presence of amidoxime groups in the
pores, the Brunauer−Emmett−Teller (BET) surface area is
reduced to 855 m2 g−1 from 4715 m2 g−1 upon postsynthetic
modification (Figure 2). The decreased surface area may be due
to the increased mass and pore filling after the functionality
addition. Correspondingly, pore size distributions show a clear
shrinkage, with pore size maxima shrinking from 14 Å in PAF-1
to 7 Å in PAF-1-CH2AO (Figure S1).
After confirming the grafting of amidoxime groups and

permanent porosity of PAF-1-CH2AO, we examined its ability
to capture uranyl (UO2

2+), the prevalent form of uranium in
aqueous solutions. To assess the overall capacity, an adsorption
isotherm (Figure 3a) was collected by equilibrating the PAF-1-
CH2AO with a wide range of uranyl concentrations from 8.6 to
165.7 ppm at a phase ratio of 0.25 mg mL−1. The resulting
isotherm was well fitted with the Langmuir model, giving rise to
a correlation coefficient R2 = 0.97. The maximum uranium
uptake capacity was estimated to be 304 mg g−1, which is
among the highest reported values for uranium adsorbent
materials.4−10 Time-course adsorption measurements indicated

that uranyl capture by PAF-1-CH2AO is kinetically efficient
(Figure 3b), as evidenced by reaching its 84.4% saturation
capacity within 1 h with an increase to 95.8% after 3 h. After 12
h, PAF-1-CH2AO gave rise to an adsorption capacity as high as
283 mg g−1. More significantly, PAF-1-CH2AO can readily be
regenerated by treating it with Na2CO3 (1 M), and it was
demonstrated to retain its uranium uptake capacity for at least

Figure 1. (a) IR spectra of PAF-1, PAF-1-CH2CN, and PAF-1-
CH2AO. (b) Solid-state 13C NMR spectrum of PAF-1-CH2AO. N2
sorption isotherms of PAF-1 (black) and PAF-1-CH2AO (red).

Figure 2. N2 sorption isotherms of PAF-1 (black) and PAF-1-CH2AO
(red).

Figure 3. (a) UO2
2+ adsorption isotherm for PAF-1-CH2AO. Inset

shows the linear regression by fitting the equilibrium adsorption data
with Langmuir adsorption model. (b) Adsorption kinetics of UO2

2+

versus contact time in aqueous solution using PAF-1-CH2AO.
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two consecutive cycles, affording a value of 271 mg g−1, which
is comparable to that of the fresh PAF-1-CH2AO. While under
similar conditions, PAF-1 gave a negligible adsorption amount
(less than 10 mg g−1), suggesting that almost all of the captured
uranium species are contributed to the grafted amidoxime
groups.
Economical and proliferation-resistant management of radio-

active waste is a topic of high priority for national security and
sustainable power generation. Accordingly, we investigated the
effectiveness of PAF-1-CH2AO for removing UO2

2+ from
aqueous solutions (Figure 4). In brief, 10 mg of PAF-1-CH2AO

was added to 200 mL of aqueous solution containing 4100 ppb
UO2

2+. The concentration of UO2
2+ drastically decreased to

12.4 ppb after 60 min of treatment, indicating a removal
efficiency of 99.7%. After 90 min of treatment, the residual
concentration of UO2

2+ was reduced to 0.81 ppb, more than 1
order of magnitude lower than the acceptable limit of 30 ppb
defined by the US EPA. The kinetic data were fitted with the
pseudo-second-order kinetic model, which can be described by
the following equation:

= +t
q k q

t
q

1

t 2 e
2

e

Here, k2 is the pseudo-second-order rate constant of adsorption
(g mg−1 min−1). The quantities qe and qt are the amount of
metal ion adsorbed (mg g−1) at equilibrium and at time t,
respectively, and t is adsorption time (min). The plots of t/qt vs
t of the kinetic data showed perfect linear relation (the inset in
Figure 4b), yielding a correlation coefficient of R2 = 0.999 54,
which indicates that the rate-limiting step of the adsorption
process is chemical adsorption. These results clearly suggest the
potential of using PAF-1-CH2AO for efficient and effective
decontamination of wastewater polluted by highly toxic and
radioactive uranium.
To further demonstrate the applicability of PAF-1-CH2AO,

the distribution coefficient value (Kd) was calculated using the
following equation:

=
−⎛

⎝⎜
⎞
⎠⎟K

C C
C

V
md
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where V is the volume of the treated solution (mL), m is the
amount of adsorbent (g), Ci is the initial concentration of
UO2

2+, and Ce is the equilibrium concentration of UO2
2+. The

value of Kd reflects the affinity and selectivity of the sorbents
and is an important parameter for a sorbent’s performance
metrics. A Kd value of 1.0 × 105 mL g−1 is generally regarded as
excellent. Remarkably, PAF-1-CH2AO affords an outstanding
Kd value of 1.05 × 106 mL g−1 (calculated based under the
condition of V/m = 20 000 mL g−1 with initial UO2

2+

concentration of 4100 ppb).
Encouraged by the above results, we tested the performance

of PAF-1-CH2AO in recovery of uranium from simulated
seawater to evaluate its potential in the enrichment of uranium
from the ocean. We observed PAF-1-CH2AO is able to adsorb
UO2

2+ (7.05 ppm) in the presence of a tremendous excess of
NaCl and NaHCO3 (25.6 g L−1 of NaCl and 0.198 g L−1 of
NaHCO3, respectively), giving rise to a moderate to high
adsorption capacity of about 40 mg g−1 (Figure S2), thus
suggesting PAF-1-CH2AO is a promising candidate for recovery
of uranium from the ocean.
To gain insight into the coordination environment of

uranium in PAF-1-CH2AO, we employed X-ray absorption
fine structure (XAFS) spectroscopy. Data were collected at the
uranium LIII-edge (17.166 keV) on beamline 10-BM-B of the
Advanced Photon Source56 and processed using the Demeter
software suite of the IFEFFIT package based on FEFF 6.57,58

As shown in Figure 5, a high quality fit (R = 1.37%; χν
2 = 34.5)

of the extended XAFS (EXAFS) data was achieved through
application of a structure model for uranium bound by 1.4 ±
0.3 amidoxime ligands in an η2-motif, with the remaining
equatorial plane filled with 0.5 ± 0.3 carbonate and 2.1 ± 0.8
coordinating water molecules. Such results are consistent with
crystallographic and computationally based investigations
regarding uranyl bonding modes,59 and the EXAFS spectra
possess marked similarities with previously reported data for
UO2

2+ η2-bound by amidoxime.60−62 Importantly, the refined
coordination number for the amidoxime ligand is greater than
1, revealing cooperative binding occurs between adjacent
amidoxime species inside PAF-1-CH2AO. Such phenomena
have been previously reported to afford high uranium uptake
and strong binding in MOFs24 and may constitute a general
design principle for the further development of advanced
nanostructured adsorbent materials. Additional experimental
details regarding XAFS data collection and analysis are available
in the Supporting Information.

Figure 4. (a) UO2
2+ sorption kinetics of PAF-1-CH2AO under the

UO2
2+ initial concentration of 4100 ppb with a V/m ratio at 20 000 mL

g−1. (b) Adsorption curve of UO2
2+ versus contact time in aqueous

solution using PAF-1-CH2AO. Inset shows the pseudo-second-order
kinetic plot for the adsorption.
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■ CONCLUSION
In summary, we have demonstrated how porous organic
polymers can be functionalized for efficient uranium adsorption
from water as exemplified by decorating the highly porous and
stable POP material, PAF-1, with the uranyl chelating
amidoxime group. The resultant amidoxime functionalized
PAF-1 (PAF-1-CH2AO) exhibits excellent uranium extraction
performance with a high uranium uptake capacity of over 300
mg g−1 and an outstanding distribution coefficient value (Kd) of
1.05 × 106 mL g−1 that renders it to effectively reduce the
uranyl concentration from 4.1 ppm to less than 1.0 ppb in
aqueous solutions, well below the acceptable limit of 30 ppb
defined by the US EPA. In addition, PAF-1-CH2AO is capable
of extracting uranium from simulated seawater with a
moderately high adsorption capacity of about 40 mg g−1. The
local coordination environment of uranium within PAF-1-
CH2AO has also been elucidated by XAFS spectroscopic
studies, which suggest the cooperative binding of UO2

2+

between adjacent amidoxime species, reasonably interpreting
the excellent uranium extraction performances of PAF-1-
CH2AO. Our work not only demonstrates functionalized
POPs as a new type of adsorbent material for efficient uranium
extraction from aqueous solutions but also provides a task-
specific design principle for the development of advanced
porous materials for various applications. The design and
functionalization of new POPs with enhanced performance in
uranium extraction and other contaminants removal are
currently underway in our laboratory.
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